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Abstract
The dependence of the lattice parameter of diamond upon the isotopic mass
has been studied by path-integral Monte Carlo simulations in the isothermal–
isobaric ensemble. This computational method provides us with a quantitative
and nonperturbative procedure for analysing such anharmonic effects. Atomic
nuclei were treated as quantum particles interacting via a Tersoff-type potential.
At 300 K, the difference �a between the lattice parameter of isotopically
pure crystals of 12C and 13C is found to be 6.1 × 10−4 Å, in good agreement
with experimental results. This difference decreases under an applied external
pressure, and for 4000 kbar we obtain �a = 2.4 × 10−4 Å.

1. Introduction

In recent years, the effect of isotopic composition on the lattice dynamics and electronic
properties of diamond-type materials has been investigated in great detail [1,2]. This has been
feasible due to the availability of single crystals, either isotopically pure or with controlled
isotope concentrations. For diamond in particular, some of the most interesting properties
include changes in the energy gap [3], phonon spectrum [4–6], elastic constants [7], lattice
parameter [8–10], and thermal conductivity [11–13] with the average isotopic mass. Other
phonon-related properties, such as the thermal expansion, are also expected to depend on the
isotope mass. Moreover, isotopic effects in diamond at high pressure are of particular interest
due to the importance of the diamond anvil cell in high-pressure physics [14].

The dependence of the atomic vibrational amplitudes upon the atomic mass, along with the
anharmonicity of the lattice vibrations, causes a change of lattice parameter with the average
isotopic mass [8, 15]. This effect is most important at low temperatures, and disappears at
T > �D (�D: the Debye temperature of the material). Recently, the isotopic effect on the
lattice parameter of germanium has been measured with high precision by using an x-ray
standing wave [16]. This is a promising technique for carrying out very precise determinations
of the lattice parameter of other crystalline materials.

The isotopic dependence of the lattice parameter of diamond has been studied by x-ray
diffraction techniques [8,9], as well as theoretical methods [10,17]. In particular, Pavone and
Baroni [17] studied this isotope dependence using density-functional perturbation theory, in a
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quasi-harmonic approximation. An alternative theoretical approach for studying many-body
systems at finite temperatures is the Feynman path-integral (PI) method, which allows one
to include directly quantum effects and anharmonicities in the numerical simulation of the
crystal properties. Given an interatomic potential, structural properties can be obtained within
the PI approach with arbitrary accuracy by Monte Carlo (MC) simulations [18,19]. Thus, the
PI MC method was employed earlier to study isotopic effects in solids, and in our context it
was applied to analyse isotope effects upon the lattice parameter of solid neon [20], and more
recently those of germanium [21] and silicon [22].

In this paper we present results for the cell parameter a of diamond, as derived from
atomistic PI MC simulations in the isothermal–isobaric (NPT ) ensemble. The cell parameter
is studied as a function of temperature, pressure, and isotopic mass (M). The interatomic
interaction is described by an effective Tersoff-type potential [23], which was employed earlier
to obtain structural and thermodynamic properties of diamond by PI MC simulations [24].

2. Computational method

The implementation of the PI method for numerical simulations is based on an isomorphism
between the quantum system and a classical one, obtained by replacing each quantum particle
(here, the atomic nucleus) by a cyclic chain of L (Trotter number) classical particles. In
the limit of classical mechanics, the cyclic chains collapse into single points and, therefore,
classical simulations correspond to the limit L = 1. Details of this kind of quantum simulation
can be found elsewhere [19, 25, 26].

Our simulations have been carried out on a 2 × 2 × 2 supercell of the diamond face-
centred-cubic cell including 64 C atoms, with periodic boundary conditions. We have checked
that using larger supercells does not change appreciably any of the results presented below. In
particular, we have carried out PI MC simulations on a 4 × 4 × 4 supercell at three different
temperatures, and found that the results coincide (within error bars) with those obtained for
the 2 × 2 × 2 supercell. The C nuclei were treated as quantum particles interacting via a
Tersoff-type potential [23, 27], according to which the interaction between atoms i and j is
described as

Vij = fC(rij )
[
fR(rij ) + bijfA(rij )

]
(1)

where rij is the interatomic distance. The functions fR(r) = A exp(−λ1r) and fA(r) =
−B exp(−λ2r) represent repulsive and attractive pair potentials, respectively, fC is a smooth
cut-off function, and bij is an effective measure of the bond order, as defined in reference [27].
We have taken the parameters given in reference [23], exceptA = 1387.3 eV andB = 348.3 eV.
In fact, the original parameters were fitted to reproduce experimental values by using classical
simulations. This is the case for the lattice parameter of diamond, for which classical
simulations with the original Tersoff parameters give the measured room-temperature value
(but not the actual temperature dependence, which includes quantum effects). However, these
potential parameters are not totally adequate for the quantum simulations, as quantum zero-
point effects change the low-temperature values of the calculated quantities (as they do in
the real material). Thus, the parameters A and B were modified in order to reproduce the
actual low-temperature value of the lattice parameter in the quantum simulations. In earlier
work [24], we carried out PI MC simulations of diamond with this Tersoff-type potential,
and found results for structural and thermodynamic properties (in particular, for the lattice
parameter and thermal expansion coefficient) close to the experimental values.

Diamond crystals with average isotopic mass M have been modelled by setting a mass
M for every atom in the simulation cell (virtual-crystal approximation). We have checked for
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two different M-values that the results obtained by using this approximation coincide (within
the precision of our results) with those yielded by actually distributing 12C and 13C atoms in
the appropriate proportions over the simulation cell. In these simulations, both isotopes were
randomly distributed over the lattice sites, and they were kept fixed at their respective positions
(no diffusive positional change).

For each set of values considered for our variables (T , P,M), we generated 2 × 104

quantum paths per atom for system equilibration, and 2×106 paths per atom for the calculation
of ensemble average properties. To keep a constant precision for the results at different
temperatures, we have considered a Trotter number L that scales as the inverse temperature.
In fact, we have taken L as the integer number closest to h̄ωc/(kBT ), with ωc ∼ 3ωD (ωD: the
Debye frequency of diamond), which is enough for convergence of the results. This means
that LT = 6000 K, i.e., L = 20 at T = 300 K. The convergence of the lattice parameter with
the Trotter number was studied in previous work [24]. Results for a obtained from simulations
with LT > 6000 K lie within the error bars of the data shown below. The maximum change
allowed for the lattice parameter a in a Monte Carlo step amounts to 0.02 Å at T = 300 K,
and increases to 0.05 Å at T = 2000 K. More of the practical details on this computational
method are given in reference [19].

3. Results and discussion

With the interatomic potential employed here, the minimum potential energy for the (classical)
diamond crystal is found to be E0 = −481.302 eV per simulation cell (64 atoms), which
corresponds to a lattice parameter acl(0) = 3.5493 Å. This value for E0 translates into a
cohesive energy of 7.52 eV per atom. In figure 1 we plot the temperature dependence of
the internal energy (kinetic plus potential) obtained in the PI MC simulations at atmospheric
pressure for isotopically pure crystals of 12C (squares) and 13C (circles). In this figure we
have taken as zero the minimum potential energy of the classical crystal (E0). At 300 K, the
internal energy found in the simulations amounts to −467.76 and −468.23 eV for 12C and 13C,
respectively. This corresponds to a cohesive energy of about 7.31 eV per atom, close to the
experimental value of 7.36 eV [28]. According to our calculations, the 13C crystal is 7 meV per
atom more stable than the natural crystal, as a consequence of the smaller vibrational energy
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Figure 1. The temperature dependence of the internal energy
per simulation cell (64 C atoms), for isotopically pure crystals
of 12C (squares) and 13C (circles), as derived from PI MC
simulations. Dotted lines are guides to the eye.
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of the former. The internal energy shown in figure 1 corresponds basically to the vibrational
energy, Evib, since changes in the elastic energy of the crystal, caused by lattice expansion, are
much smaller and amount to 0.10 and 0.22 eV per cell at 300 and 1000 K, respectively (see
reference [24]). For T → 0 (zero-point motion) the vibrational energy amounts to 13.31 and
12.81 eV per simulation cell (208 and 200 meV per atom) for 12C and 13C, respectively. Thus,
at 0 K we find a ratio E12

vib/E
13
vib = 1.039, close to the value expected in a harmonic approach

(
√

13/12 = 1.041).
The anharmonicity of the lattice vibrations causes an increase in the average C–C distance

(or in the lattice parameter) at T = 0. This interatomic distance is larger than that giving the
minimum potential energy of the (classical) crystal, which corresponds to the infinite-mass limit
(dcl(0) ≡ d∞(0) = 1.5369 Å). Classical MC simulations give a linear temperature dependence
for the interatomic distance, which converges at low T to d∞(0) (see reference [24]). In the
quantum simulations, we find a 12C–12C distance that extrapolates at zero temperature to
d12(0) = 1.5443 Å. This means that the increase in 12C–12C distance at T = 0 with respect
to the classical minimum amounts to 7.4 × 10−3 Å. This quantum effect on the nearest-
neighbour atom distance at low temperature translates into an increase in the lattice parameter
of 1.70 × 10−2 Å, as compared with the ‘classical’ crystal. In fact, we find for the quantum
crystal a zero-temperature lattice parameter a12(0) = 3.5663 Å versus acl(0) = 3.5493 Å for
the classical one. Note that this ‘zero-point expansion’ is of the order of the change in a due to
thermal expansion between 0 K and the Debye temperature of diamond (�D ∼ 2000 K) [24].
The difference a−acl between the lattice parameter found in quantum and classical simulations
goes down as temperature rises, and at T � �D it decreases as 1/T (see reference [22]). Our
results for the lattice parameter of 12C derived from PI MC simulations with the Tersoff-
type potential follow closely the experimental results in the temperature range where data
are available [24, 29]. In particular, at T = 300 K we find for 12C a lattice parameter
a12 = 3.566 60(2) Å versus a = 3.567 14(5) Å derived from room-temperature x-ray
diffraction data for natural diamond (M = 12.011 amu) [8, 9].

At a given temperature, the lattice parameter is expected to decrease linearly for increasing
isotopic mass [17, 21, 30]. In figure 2 we show PI MC results for the lattice parameter of
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Figure 2. Lattice parameter of diamond as a function of temperature for isotopically pure crystals
of 12C (triangles), 13C (squares), and for a crystal with average isotopic mass M = 12.5 amu
(circles). Symbols represent results of PI MC simulations at P = 1 atm and dotted lines are guides
to the eye. Error bars of the simulation results are smaller than the symbol size.
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diamond for three different average masses M and temperatures lower than 1000 K, where the
isotopic effect is clearly observable. In this figure, different symbols correspond to different
masses: triangles forM = 12, circles forM = 12.5, and squares forM = 13 amu. The change
in lattice parameter, �a = aM − a12, for M = 13 and 12.5 amu is displayed in figure 3. Open
circles and squares correspond to results derived from our PI MC simulations, and dotted lines
are guides to the eye. At low temperatures (T � 200 K), we obtain �a = −6.5 (±0.2) and
−3.3 (±0.2)×10−4 Å forM = 13 and 12.5 amu, respectively. For increasing temperature, the
difference �a decreases, as quantum effects become less important for describing the atomic
motion. This isotopic effect is still seen in the results of our MC simulations at temperatures of
about 2000 K (of the order of �D). At higher T , it becomes more difficult to observe due to the
noise present in the values of �a derived from the simulations, which increases as temperature
is raised.
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Figure 3. Difference between lattice parameters, �a = aM − a12, versus temperature for M = 13
(squares) and 12.5 amu (circles), as derived from PI MC simulations at atmospheric pressure.
Dotted lines are guides to the eye. The solid line is a parabolic fit to the results of a quasi-harmonic
approximation for 12C, given in reference [17].

The low-temperature changes in a due to isotopic mass can be explained quantitatively
from the zero-point lattice expansion, aref(0) − a∞(0), for a crystal with a reference isotopic
mass Mref . In fact, in a quasi-harmonic approach the difference �a(0) ≡ aM(0) − aref(0) at
T = 0 can be expressed as [22, 30]

�a(0) = [aref(0) − a∞(0)]
(√

Mref/M − 1
)
. (2)

Taking 12C as our reference, we have a12(0) − a∞(0) = 1.70 × 10−2 Å (see above), and
equation (2) gives �a(0) = −3.4 and −6.7 × 10−4 Å for M = 12.5 and 13 amu, respectively.
These values are close to the low-temperature results found from direct calculation of the lattice
parameters corresponding to different atomic masses (squares and circles in figure 3). We note
that an expression for �a(0), linear in �M = M −Mref , can be obtained by Taylor expanding
the square root on the r.h.s. of equation (2), and neglecting terms of second and higher order
in �M (see [22]).

The solid line in figure 3 corresponds to calculations by Pavone and Baroni [17]. These
authors studied the dependence of the unit-cell volume upon isotopic mass by using density-
functional perturbation theory in a quasi-harmonic approximation. They presented a parabolic
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fit to their results for �V/V as a function of temperature, in a region centred around 300 K.
Their fitted parabola for 13C, translated to values of �a, is presented in figure 3. This quasi-
harmonic approximation gives an isotopic effect on the lattice parameter somewhat smaller
than that found from our PI MC simulations. In particular, for 13C at T = 300 K, this method
yields �a = −5.4 × 10−4 Å, to be compared with a value of −6.1 (±0.2) × 10−4 Å, derived
from the PI MC simulations presented here.

In figure 4 we show the difference �a as a function of the average isotopic mass M .
Results of our PI MC simulations at 300 K (black squares) are compared with room-temperature
experimental data from Holloway et al [8] (open circles) and Yamanaka et al [9] (diamonds).
Taking into account the error bars associated with the experimental results and MC simulations,
these three sets of data points are compatible with each other. Our simulation results for �a

follow a linear dependence on M (dashed line), with a slope slightly larger than that found
by Pavone and Baroni [17] (dotted line). The experimental results in the range from M = 12
to 13 amu are also compatible with this linear dependence. Nevertheless, Yamanaka et al [9]
proposed a parabolic dependence for �a, in view of their x-ray diffraction results (diamonds).
Such a dependence is, however, very difficult to reconcile with the present and other theoretical
analyses [10, 17], as well as with the current understanding of isotopic effects in the lattice
parameters of crystals [30–32]. Moreover, that parabolic dependence would produce spurious
features, such as a minimum in the lattice parameter for M = 13.2 amu, and an increase in
a for larger M (which corresponds to a hypothetical crystal with large concentration of 14C).
Although it is clear that corrections to the linear dependence will appear due to higher-order
effects, not included in approximations such as the quasi-harmonic one, they are too small
to be detected, considering the precision of the experimental data in figure 4. The PI MC
simulations can, in principle, detect such deviations from linearity, but also in this case the
present error bars preclude the observation of such a small effect.
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Figure 4. Change in the lattice parameter, �a = aM − a12, as a function of the average isotopic
mass M , at atmospheric pressure. Black squares: PI MC results at T = 300 K; open circles and
diamonds: room-temperature experimental data obtained by Holloway et al [8] and Yamanaka
et al [9], respectively. Error bars for the data points at M = 13 amu are similar to those for smaller
M , and are not shown for the sake of clarity. The dashed line is a linear fit to the PI MC data, and
the dotted line corresponds to the quasi-harmonic approximation in reference [17].
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The pressure dependence of the unit-cell volume for 12C was studied earlier with PI MC
simulations [24]. At T = 300 K and P = 4000 kbar, we found a = 3.093 70(2) Å, and the
crystal volume is reduced to a value of 0.653 times the zero-pressure volume. Moreover, the
isotopic effect on the crystal volume (or lattice parameter) is expected to decrease as pressure
rises, due to the change in bulk modulus with isotopic mass [7]. In figure 5 we present the
pressure dependence of �a at T = 300 K for M = 12.5 and 13 amu, as derived from our PI
MC simulations. For increasing pressure, �a is lowered, and we find for 13C a change from
�a = −6.1 (±0.2)× 10−4 Å at atmospheric pressure to −2.4 (±0.2)× 10−4 Å at 4000 kbar.
Hence, the fractional volume change �V/V between 13C and 12C decreases from −5.1×10−4

at zero pressure to −2.3 × 10−4 at 4000 kbar. As a result, �a for M = 12.5 amu is half the
value found for 13C over the whole range from 0 to 5000 kbar. The important change in �a as
a function of pressure is basically due to an increase in the bulk modulus, B, of the material
as the pressure is raised. In fact, at a given temperature, one can write aM − a12 as a function
of the Grüneisen parameters of the material, and see that, to first order in these parameters,
�a is proportional to 1/B [22, 30]. In other words, the decrease in isotopic effect as pressure
rises is associated with a reduction of the zero-point lattice expansion (see equation (2)), that
in turn is caused by an increase in the bulk modulus of the material.
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Figure 5. Difference �a = aM − a12 as a function of
pressure at 300 K. Symbols are data points derived from PI
MC simulations forM = 13 (squares) and 12.5 amu (circles).
Dotted lines are guides to the eye.

We finally note that, in spite of the limitations associated with using an empirical potential
originally optimized for classical simulations, good agreement has been found between PI
MC and experimental results for the isotope effect in the lattice parameter of diamond. An
alternative to the use of this kind of empirical potential in condensed-matter simulations consists
of calculating the system energy by standard electronic structure methods, as in the Car–
Parrinello approach [33]. Although the original formulation of this method considered the
atomic nuclei as classical particles, new approaches that take into account the quantum nature
of both electrons and nuclei have been developed in recent years. In this way, ab initio path-
integral molecular dynamics simulations have become feasible for small molecules [34], and
they can now be applied to condensed-matter problems [35]. This is a promising tool for
studying anharmonic effects in solids.

In summary, we have studied the dependence of the lattice parameter of diamond
on isotopic mass, at different temperatures and pressures, by path-integral Monte Carlo
simulations. These quantum simulations allow us to study phonon-related properties of
solids, without the usually employed harmonic or quasi-harmonic approximations. Thus,
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anharmonicities in the lattice vibrations are taken into account in a natural way, which permits
us to check results obtained from different theoretical approaches. Our results at atmospheric
pressure agree well with those derived from x-ray diffraction experiments, and we hope that
our prediction for the isotopic effect at high pressures will stimulate experimental studies under
these conditions.

Acknowledgments

The author benefited from discussions with R Ramı́rez. This work was supported by CICYT
(Spain) through Grant No BFM2000-1318, and by DGESIC through Project No 1FD97-1358.

References

[1] Cardona M, Etchegoin P, Fuchs H D and Molinás-Mata P 1993 J. Phys.: Condens. Matter 5 A61
[2] Cardona M 2000 Phys. Status Solidi b 220 5
[3] Collins A T, Lawson S C, Davies G and Kanda H 1990 Phys. Rev. Lett. 65 891
[4] Hass K C, Tamor M A, Anthony T R and Banholzer W F 1992 Phys. Rev. B 45 7171
[5] Muinov M, Kanda H and Stishov S M 1994 Phys. Rev. B 50 13 860
[6] Vogelgesang R, Alvarenga D, Kim H, Ramdas A K, Rodriguez S, Grimsditch M and Anthony T R 1998 Phys.

Rev. B 58 5408
[7] Ramdas A K, Rodriguez S, Grimsditch M, Anthony T R and Banholzer W F 1993 Phys. Rev. Lett. 71 189
[8] Holloway H, Hass K C, Tamor M A, Anthony T R and Banholzer W F 1991 Phys. Rev. B 44 7123

Holloway H, Hass K C, Tamor M A, Anthony T R and Banholzer W F 1992 Phys. Rev. B 45 6353 (erratum)
[9] Yamanaka T, Morimoto S and Kanda H 1994 Phys. Rev. B 49 9341

[10] Biernacki S W 1997 Phys. Rev. B 56 11 472
[11] Anthony T R, Banholzer W F, Fleischer J F, Wei L, Kuo P K, Thomas R L and Pryor R W 1990 Phys. Rev. B

42 1104
[12] Wei L, Kuo P K, Thomas R L, Anthony T R and Banholzer W F 1993 Phys. Rev. Lett. 70 3764
[13] Olson J R, Pohl R O, Vandersande J W, Zoltan A, Anthony T R and Banholzer W F 1993 Phys. Rev. B 47 14 850
[14] Vohra Y K and Vagarali S S 1992 Appl. Phys. Lett. 61 2860
[15] Buschert R C, Merlini A E, Pace S, Rodriguez S and Grimsditch M H 1988 Phys. Rev. B 38 5219
[16] Kazimorov A, Zegenhagen J and Cardona M 1998 Science 282 930
[17] Pavone P and Baroni S 1994 Solid State Commun. 90 295
[18] Ramı́rez R and Herrero C P 1993 Phys. Rev. B 48 14 659
[19] Noya J C, Herrero C P and Ramı́rez R 1996 Phys. Rev. B 53 9869
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